- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Johnston, Murray V. (4)
-
Kerecman, Devan E. (4)
-
Apsokardu, Michael J. (2)
-
Zhang, Yao (2)
-
Achtenhagen, Marcel (1)
-
Freedman, Miriam Arak (1)
-
Haugh, Devon N. (1)
-
Higgins, Devon N. (1)
-
Ott, Emily-Jean E. (1)
-
Tackman, Emma C. (1)
-
Talledo, Savannah L. (1)
-
Taylor, Michael S. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Kerecman, Devan E.; Apsokardu, Michael J.; Talledo, Savannah L.; Taylor, Michael S.; Haugh, Devon N.; Zhang, Yao; Johnston, Murray V. (, Analytical Chemistry)null (Ed.)
-
Zhang, Yao; Apsokardu, Michael J.; Kerecman, Devan E.; Achtenhagen, Marcel; Johnston, Murray V. (, Journal of the American Society for Mass Spectrometry)
-
Johnston, Murray V.; Kerecman, Devan E. (, Annual Review of Analytical Chemistry)Atmospheric aerosol, particulate matter suspended in the air we breathe, exerts a strong impact on our health and the environment. Controlling the amount of particulate matter in air is difficult, as there are many ways particles can form by both natural and anthropogenic processes. We gain insight into the sources of particulate matter through chemical composition measurements. A substantial portion of atmospheric aerosol is organic, and this organic matter is exceedingly complex on a molecular scale, encompassing hundreds to thousands of individual compounds that distribute between the gas and particle phases. Because of this complexity, no single analytical technique is sufficient. However, mass spectrometry plays a crucial role owing to its combination of high sensitivity and molecular specificity. This review surveys the various ways mass spectrometry is used to characterize atmospheric organic aerosol at a molecular level, tracing these methods from inception to current practice, with emphasis on current and emerging areas of research. Both offline and online approaches are covered, and molecular measurements with them are discussed in the context of identifying sources and elucidating the underlying chemical mechanisms of particle formation. There is an ongoing need to improve existing techniques and develop new ones if we are to further advance our knowledge of how to mitigate the unwanted health and environmental impacts of particles.more » « less
An official website of the United States government
